CROMAX 280X

Hard chrome bar

Cromax 280X is based on a low carbon, microalloyed steel combining high strength with excellent machinability and weldability. For $\emptyset \le 90$ mm, yield and tensile strength are 20% higher than normal for hard-chrome bars based on low-carbon weldable steel. This improvement is achieved without detriment to machinability or weldability.

In comparison with standard products based on grade 20MnV6, the superior properties of Cromax 280X offers a number of potential advantages in the design and manufacture of fluid-power cylinders, not the least the possibility to downsize piston rods without loss of load-bearing capacity, thereby reducing not only weight but also cost.

Average chemical analysis Cromax 280X

С %	Si %	Mn %	S %	V %	C.E. % (*)
0.18	0.35	1.55	0.025	0.11	0.55 max

*C.E. = % C + % Mn/6 + (% Cu + % Ni)/15 + (% Cr + % Mo + % V)/5

Corresponding standards

The table shows the closest equivalent standard for the steel in Cromax 280X.

Ovako grade	EN	DIN	BS	AFNOR	ASTM
Ovako 280X	20MnV6	20MnV6	55M	E420	A572

Chrome layer

For $\emptyset \le 20$ mm, the chrome layer thickness is 20 μ m min. For smaller sizes, the minimum thickness is 15 μ m.

Surface roughness

The surface roughness (Ra) is always less than 0.2 μ m and normally in the range 0.05–0.10 μ m. Rt (ISO) is always less than 2.0 μ m and normally in the range 0.5–1.0 μ m.

Surface hardness

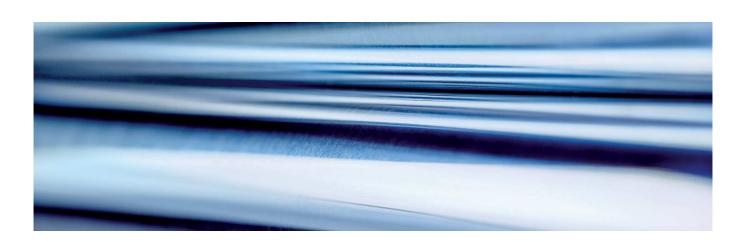
The chrome layer hardness is 850 HV_{0.1}min.

Straightness

For \emptyset < 30 mm, the maximum deviation is 0.1 mm/0.5 m. The maximum deviation for larger diameters is 0.1 mm/1.0 m.

Roundness

The out of roundness is maximised at 50 % of the diameter tolerance interval.


Diameter tolerance

ISO f7 is standard. Other tolerances can be supplied upon request (narrowest range is ISO level 7).

Mechanical properties

Size (Ø)	Yield stress R _{eH} , N/mm², min	Utimate tensile stress R _{eH} , N/mm²	Elongation A ₅ , %, min	Hardness HB	Thoughness KV, Joule, min
<20	520	650–800	12	200–240	No guarantee
20-90	520	650–800	19	200–240	27 at –20 °C
>90	440	550–700	19	180–230	No guarantee (*)

^{*}Base steel meeting KV \geq 27J at -20°C can be supplied by special arrangement.

CROMAX IH 482

Induction-hardened, hard chrome bar

Induction-hardened Cromax IH 482 is based on a medium carbon, micro-alloyed steel, which is characterised by high strength in the as-rolled condition, i.e. without heat treatment. The 482 base steel is a cost-effective alternative to traditional low-alloy, quenched and tempered grades with, in the context of piston-rod applications, equivalent properties.

The analysis of the base steel in Cromax IH 482 is well adapted to induction hardening and a high and uniform hardness is achieved throughout the case irrespective of diameter. In consequence, the resistance to even high-energy external impact is excellent.

Average chemical analysis Cromax IH 482

C %	Si %	Mn %	S %	V %	C.E. % (*)
0.39	0.40	1.20	0.02	0.13	max 0.72

*C.E. = % C + % Mn/6 + (% Cu + % Ni)/15 + (% Cr + % Mo + % V)/5

Corresponding standards

The table shows the closest equivalent standard for the steel in Cromax IH 482. In most cases, the correspondence is only approximate.

Cromax	EN	DIN	AFNOR	SAE/ASTM
482	38MnVS6	38MnSiVS5	30MV6	1045V

Mechanical properties

Yield stress R _{eH} , N/mm², min	Utimate tensile stress R _{eH} , N/mm ²	Elongation A ₅ , %, min		Thoughness KV, Joule, min
580	850–1000	14	250–300	No guarantee given, but normally 15–30 J at 20°C

Chrome layer

The thickness of the chrome layer is 20µm min.

Surface roughness

The surface roughness (Ra) is always less than 0.2 μ m and normally in the range 0.05–0.10 μ m. Rt (ISO) is always less than 2.0 μ m and normally in the range 0.5-1.0 μ m.

Surface hardness

The chrome layer hardness is $850~{\rm HV}_{0.1}$ min. The surface hardness in the induction-hardened zone immediately beneath the chrome layer is $55~{\rm HRC}$ min. The depth of hardening, which is defined as the distance from the steel/chrome interface at which the hardness has dropped to $400~{\rm HV}_{\rm 5}$, is dependent on diameter as tabulated below:

Size, Ø mm	Hardening depth, mm
< 40	1.0–2.5
40 < = < 90	1.0–3.0
= > 90	1.0–5.0

Other hardening depths can be supplied by special arrangement.

Straightness


The maximum deviation is 0.2 mm/1.0 m.

Roundness

The out of roundness is maximised at 50 % of the diameter tolerance interval.

Diameter tolerance

ISO f7 is standard. Other tolerances can be supplied upon request (narrowest range is ISO level 7).

